On densest packings of equal balls of Rn and Marcinkiewicz spaces
نویسندگان
چکیده
We investigate, by “ à la Marcinkiewicz” techniques applied to the (asymptotic) density function, how dense systems of equal spheres of Rn, n ≥ 1, can be partitioned at infinity in order to allow the computation of their density as a true limit and not a limsup. The density of a packing of equal balls is the norm 1 of the characteristic function of the systems of balls in the sense of Marcinkiewicz. Existence Theorems for densest sphere packings and completely saturated sphere packings of maximal density are given new direct proofs. 2000 Mathematics Subject Classification: 52C17, 52C23.
منابع مشابه
2 00 8 On densest packings of equal balls of R n and Marcinkiewicz spaces
We investigate, by “ à la Marcinkiewicz” techniques applied to the (asymptotic) density function, how dense systems of equal spheres of Rn, n ≥ 1, can be partitioned at infinity in order to allow the computation of their density as a true limit and not a limsup. The density of a packing of equal balls is the norm 1 of the characteristic function of the systems of balls in the sense of Marcinkie...
متن کاملSphere Packing: asymptotic behavior and existence of solution
Lattices in n-dimensional Euclidean spaces may be parameterized by the non-compact symmetric space SL(n,R)/SO(n,R). We consider sphere packings determined by lattices and study the density function in the symmetric space, showing that the density function ρ(Ak) decreases to 0 ifAk is a sequence of matrices in SL(n,R) with limk→∞ ‖Ak‖ = ∞. As a consequence, we give a simple prove that the optima...
متن کاملDensest Packings of More than Three d -Spheres Are Nonplanar
We prove that for a densest packing of more than three d–balls, d ≥ 3, where the density is measured by parametric density, the convex hull of their centers is either linear (a sausage) or at least 3–dimensional. This is also true for restrictions to lattice packings. The proofs require a Lagrange–type theorem from number theory and Minkowski’s theory of mixed volumes.
متن کاملParabolic Marcinkiewicz integrals on product spaces
In this paper, we study the $L^p$ ($1
متن کاملNew bounds for multiple packings of Euclidean sphere
Using lower bounds on distance spectrum components of a code on the Euclidean sphere, we improve the known asymptotical upper bounds on the cardinality of multiple packings of the sphere by balls of smaller radii. Let Rn be the n-dimensional Euclidean space, and Sn−1(r) ⊂ Rn be the (closed) Euclidean sphere of radius r with the center in the origin. Let further S̃n−1(r, ā) be the open ball of ra...
متن کامل